Using All the Tools in the Pink Rot Management Tool Box

Jeff Miller

0---0

Pink Rot Phytophthora erythroseptica

Pink Rot Management

- 1. Field selection/crop rotation
- 2. Adjust soil pH by lime application in low pH soils
- 3. Plant less susceptible varieties
- 4. Proper irrigation management
- 5. Use appropriate fungicides
- 6. Avoid "disease-favorable" conditions at harvest
- 7. Apply post-harvest fungicides
- 8. Reduce tuber pulp temperatures to 55 F or lower
- 9. Grade out infected tubers going into storage

2. Adjust soil pH by lime applications in low pH soils

From Benson et al., 2009, Am. J. Potato Res. 86:472-475 and Benson et al., 2009, Am. J. Potato Res. 86:466-471

3. Plant less susceptible varieties

Test conducted 2002 in Rexburg, ID with natural infection.

4. Proper Irrigation Management

Irrigating more frequently with less water decreases pink rot pressure.

Test conducted 2010 in Minidoka, ID with natural infection.

5. Use Appropriate Fungicides

Effect of Fungicide Programs on Pink Rot, 2010

Mixed population (mefenoxam sensitive and resistant)

Con Co.

Effect of Phosphite Rate and Timing on Pink Rot Russet Norkotah, natural infection, Minidoka, ID, 2008

Effect of Fungicide Timing on Pink Rot

Rescue = July 30, August 6, August 13

Rescue = July 30, August 6, August 13

Effect of Irrigation Frequency on Pink Rot

Same amount of water applied each week. Difference was frequency of irrigation.

Fungicides may not save you from the effects of improper irrigation.

Pink Rot Fungicide Trial, 2017

5. Use Appropriate Fungicides

- Mefenoxam/metalaxyl
 - Ridomil Gold products
 - Ultra Flourish
 - MetaStar
- Phosphorous acid
 - Phostrol
 - Resist 57
 - Phiticide
 - Others
- Oxathiapiprolin + Mefenoxam (in-furrow only)
 - Orondis Gold

- Cyazofamid
 - Ranman

6. Avoid Disease Favorable Conditions at Harvest

60° F

70° F

Wounding increases likelihood of disease.

C

Warmer pulp temperatures increase likelihood of disease.

7. Apply Post-Harvest Fungicides

- Phosphorous acid:
 - -12.8 fl oz/ton tubers
 - Apply in 0.5 gal water/ton tubers

7. Apply Post-Harvest Fungicides

Dis<u>infect</u> vs. Dis<u>infest</u>

Effect of Post-Harvest Applications on Pink Rot 1-Ton Bin Trial

Effect of Post-inoculation Interval on Incidence of Pink Rot

Incidence

8. Reduce Tuber Pulp Temperatures in Storage

- Operate fans and humidity as soon as the first duct is covered.
- Reduce tuber pulp temperatures to 55° F in a stair step manner, setting temps 2° cooler than your coolest tubers.
- During the ramping period, ensure the temperature differential between the top and bottom of the pile is 0.5-2° F.

Nora Olsen, University of Idaho

9. Grade Out Infected Tubers Prior to Storage

Pink Rot Management

- 1. Field selection/crop rotation
- 2. Adjust soil pH by lime application in low pH soils
- 3. Plant less susceptible varieties
- 4. Proper irrigation management
- 5. Use appropriate fungicides
- 6. Avoid "disease-favorable" conditions at harvest
- 7. Apply post-harvest fungicides
- 8. Reduce tuber pulp temperatures to 55 F or lower
- 9. Grade out infected tubers going into storage

Citations and Additional Information

- Johnson, D.A., Inglis, D.A., and Miller, J.S. 2005. Control of tuber rots caused by Oomycetes with foliar applications of phosphorous acid. Plant Disease 88: 1153-1159.
- Lambert, D.H. and Salas, B. 2001. Pink Rot. In WR Stevenson, R Loria, GD Franc, and DP Weingartner (eds.), Compendium of Potato Diseases. American Phytopathological Society, St. Paul, MN. pp. 33-34.
- Merkens, C.L., Stack R.W., Gudmestad N.C., and Secor G.A. 1995. Occurrence of pink rot in both irrigated and non-irrigated potatoes in 1994. Phytopathology (Abstr) 85: 1045.
- Miller, J.S., Miller T.D., Schneider A.T., and Poteet R. 2004b. Influence of mefenoxam application method on pink rot incidence as determined by laboratory assays. American Journal of Potato Research (Abstr) 81: 74.
- Miller, J.S., Olsen, N., Woodell, L., Porter, L.D., and Clayson, S. 2006. Post-harvest application of zoxamide and phosphite for control of potato tuber rots caused by oomycetes at harvest. American Journal of Potato Research 83:268-278.
- Peters, R.D. and Sturz, A.V. 2001. A rapid technique for the evaluation of potato germplasm for susceptibility to pink rot. Plant Disease 85: 833-837.
- Peters, R.D., Sturz, A.V., Platt, H.W.B., and Arsenault, W.J. 2004b. Recent investigations regarding the soil-borne pathogen *Phytophthora erythroseptica* and the management of potato pink rot. Recent Res.Devel.Crop Sci. 1: 479-498.
- Salas, B., Secor, G.A., Taylor, R.J., and Gudmestad, N.C. 2003. Assessment of resistance of tubers of potato cultivars to *Phytophthora erythroseptica* and *Pythium ultimum*. Plant Disease 87: 91-97.
- Salas, B., Stack, R.W., Secor, G.A., and Gudmestad, N.C. 2000b. The effect of wounding, temperature, and inoculum on the development of pink rot of potatoes caused by *Phytophthora erythroseptica*. Plant Disease 84: 1327-1333.
- Taylor, R.J., Salas, B., Secor, G.A., Rivera, V., and Gudmestad, N.C. 2002. Sensitivity of North American isolates of *Phytophthora erythroseptica* and *Pythium ultimum* to mefenoxam (metalaxyl). Plant Disease 86: 797-802.
- Taylor, R.J., Salas, B., and Gudmestad, N.C. 2004. Differences in etiology affect mefenoxam efficacy and the control of pink rot and leak tuber diseases of potato. Plant Disease 88: 301-307.

Post-harvest spray application volumes

Effect of Wounding/Temperature on Pythium Leak

